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A general procedure to calculate non-orthogonal, strictly local molecular 
orbitals (NOLMOs) expanded using only a subset of the total basis set is 
presented. The energy of a single determinant wave function is minimised 
using a Newton-Raphson approach. Total energies and barriers to internal 
rotation for CH4, NH3, H20, CH3CH3, CH3NH2, CH3OH, NH2NH2, NH2OH 
and HOOH, and certain properties of the NOLMOs present in these molecules, 
are investigated using the 4-31G basis set. 
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energy minimisation--ab-initio calculations 

1. Introduction 

Thanks to the general availability of efficient SCF-MO ab-initio programs [1, 2], 
quantum-mechanical calculations are nowadays readily performed by many 
chemists. Although these calculations can provide quantitative information in 
conformational and other problems, it is often not straightforward to explain the 
behavior of the observed system in terms of "classical" chemical concepts as, 
for instance, functional groups and their interactions [3, 4]. 

Localisation of canonical SCF-molecular orbitals is usually possible by a unitary 
transformation [5, 6]. The main problem with these orthogonal localised MOs is 
that they possess "tails" outside the localisation center which complicate the 
transfer of localised orbitals from one system to another [7]. 

However, as pointed out by several authors [8-12], it is not necessary to use 
orthogonal MOs, but instead one can use a single determinant of non-orthogonal, 
strictly local, molecular orbitals (NOLMOs). 
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In this paper a calculation scheme is outlined that leads to a description of bonds, 
lone pairs and inner shells in terms of  properties that are more or less transferable 
from one molecule to another. 

2. Variational optimisation of NOLMOs using local basis sets 

In order to be able to analyse the potential usefulness of NOLMOs in the study 
of  conformational problems, it is necessary to devise a procedure to determine 
NOLMOs in an unambiguous way. Furthermore, it is desirable to have NOLMOs 
which lead to the lowest energy upon being inserted into the Hartree-Fock energy 
expression. In the case of self-consistent NOLMOs singly excited configurations 
(flap ~ fla*) do not contribute to the total energy owing to a local Brillouin theorem 
[13, 14]. 

Procedures for variational optimisation of  NOLMOs using local basis sets have 
been published by Payne [11] and by Stoll et al. [10]. It was shown by the latter 
group of  authors that the equations given by Payne were incorrect [15]. 

The method of Stoll et al. consists of partitioning a set of basis functions into 
subsets Fp corresponding to certain localisation centers (atom, lone pair, bond). 
Each NOLMO is now expanded in the basis functions of the corresponding 
subset, which means that "tails" are explicitly excluded. 

flap= Y, CipTh (1) 
iEFp 

Defining reciprocal orbitals q~p as 

- flaq" Sqp  (2) 
q 

where Sq ] is an element of  the matrix inverse to the matrix containing the 
non-orthogonality integrals (flaplflaq) and m is the number of electron pairs, the 
partial derivatives of  the electronic energy E elec with respect to the non-zero 
orbital coefficients Cip become [10] 

dEeleC/dCip = 4(rt, l(1 - p)Fl~p) (3) 

and 

dE elec/dCip dCjq 

~ 4 ( A ( F ) ~ .  Sqp ~ - A ( 1 ) o -  (q~qIF] ~p)-(rhl~bq) �9 B~p 

-(nj[gp)" Biq) (4) 

with 

A ( X ) o  = ( n , l ( 1  - p)X(1  - p)p nj) 

and 
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In the derivation of Eq. (4), the dependence of the Fock operator on ~bq was 
neglected. One of the variational procedures as suggested by Stoll et al. is to 
optimise the orbital coefficients by expanding E Cze~ in a Taylor series. This yields 
(using Eqs. (3) and (4)) a set of  linear equations in ACip. The procedure is 
repeated until self-consistency is reached. This scheme works well for minimal 
basis sets. For larger basis sets (e.g. double zeta) however, it is no longer feasible 
to use the full hessian matrix since the solution of the set of  linear equations 
becomes unstable because of  the size of  the matrix. 

An alternative procedure suitable for large basis sets is to neglect the off-diagonal 
elements of  the hessian matrix. In this case we can express AC~p as: 

dEei~r ac ,  p 
AC~p = dEr162162 p dC~p " SCALE(ip) (5) 

with 

SCALE(ip) = SCALE(ip) prey- 
(dE elec/ dCip) p,ev  

( dE ~176176 dC,p)P'~ _ dE ~176 dC,p 

with the constraints 

SCALE(ip) ~< 1 

and 

IAC~,I ~ a maximum stepsize 

The superscript "prev"  refers to the previous iteration. 

3. Convergence acceleration 

For the calculation of the various energy terms corresponding to NOLMOs (see 
Sect. 5) to be meaningful,  it is necessary that the NOLMOs are calculated to a 
very high level of  self-consistency. Since, in general, convergence is slow at the 
end of the SCF-procedure,  a modified version of the direct inversion in the 
iterative subspace (DIIS)  method of  Pulay [16, 17] was implemented. With this 
method the convergence of  Newton-Raphson  type algorithms can be significantly 
improved. In each iteration step we define some error vector ei which is required 
to vanish as convergence is reached. It is assumed that an improved parameter  
vector p can be obtained as a linear combination of a number  of  previous vectors 
Pi: p =~,i wipi. The  coefficients wi are determined by requiring the error vector 
e = ~,~ w~e~ to approximate  the zero vector in the least-squares sense under the 
constraint that ~.~ wi equals one. As shown by Pulay [16, 17], this leads to a small 
set of  linear equations which, once solved, gives us the coefficients w~. 

In the original procedure [16], the Fock-matfix elements t ransformed to an 
orthonormal basis, i.e. S-~/2FS -1/2 (where S is the overlap matrix), were chosen 
as parameters.  For the present purposes, however, one is not only interested in 
the density but also in the NOLMO-coefficients. Therefore it is more convenient 
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to adopt the following alternative definitions for Pi and ei. Taking the NOLMO- 
coefficients of  the ith iteration as the parameter vector p~ one can define the j th  
element of  the corresponding error vector e~ as: 

@ = d ~  (6) L /aqaqd, 
In practice a number of  standard iterations are performed until the quadratic 
region is reached. From this point onwards the DIIS extrapolation procedure is 
applied periodical ly after a predetermined (5-15) number of standard cycles. 
Results obtained from HF-SCF and NOLMO calculations on  CH4,  N H 3  and 
H20 are shown in Table 1. From these examples it should be clear that the gain 
by even a single extrapolation step, which in this case lies between 7 and 15 
iteration steps, can be quite significant. The convergence acceleration properties 
of  the presently modified DIIS procedure are found to be comparable to those 
of the original method [16]. 

4. Transformations leading to unique NOLMOs 

In the case of  non-orthogonal molecular orbitals thp, (~q the first-order density 
matrix can be written as: 

p ~ -1 , (7) = @~Spq 4>q 
p ,q  

It can be shown [18] that the first-order density matrix is invariant with respect 
to a linear transformation of  the molecular orbitals, i.e.: 

~ -  @qaq~ (8) 
q 

Because in the present procedure each NOLMO has been assigned its own local 
subset Fp of  the total basis set, there exist only two cases where linear transforma- 
tions among NOLMOs are still possible without violating the condition that each 
NOLMO is expanded solely in the atomic orbitals of its own local basis set. 

(1) The first case occurs when some of the subsets assigned to different NOLMOs 
are equal i.e.: Fp = Fq . . . .  . This happens, for instance, in the case of an inner 
shell and one or more lone pairs localised on the same atom. For this case the 
ambiguity between these NOLMOs can be resolved by orthogonalising all NOL- 
MOs having the local basis set in common, and subsequently applying one of 
the known procedures [19] to localise orthogonal MOs. Examples of some of the 
known localisation procedures are: (i) The external uniform localisation method 
of Magnasco and Perico [6, 20] in which a sum of'selected overlap populations 
is maximized. (ii) The maximum electron distance suggested by Boys [21] which 
uses the minimization of I = E~(~p~lr~2[~). (III) The maximum self-interac- 
tion criterion of  Ruedenberg [5] which is based upon the maximization of  the 
quantity Y,p(chp4,pil/rl2iq~p~bp). This method is slightly more general than the 
previous one, since also systems with coinciding centroids of charge can be 
localised. 
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(2) A second case where linear transformations among NOLMOs are allowed 
occurs when a given local basis set turns out to be a subset of  another one. This, 
for example,  happens when the local basis set of  an inner shell or lone pair on 
some atom is a subset of  the local basis set of  a bond involving the same atom. 
In this case the NOLMOs  involved cannot be made orthogonal;  therefore, none 
of the previous localisation schemes can be applied. What one needs is a localisa- 
tion criterion which is intrinsic to a specified N O L M O  (bond). Intrinsic means 
that the specified criterion should be a function of parameters which only depend 
upon the N O L M O  at hand.  One such intrinsic criterion, related to the procedure 
of  Magnasco and Perico [6, 20], and suitable for linear transformations among 
NOLMOs,  is the following: 

I f  the local basis set of  N O L M O  q is a subset of  the local basis set of  N O L M O  
p, or Fq c Fp, then find a, where 

~bp = N-1/2(COS (ce)" q~p +s in  ( a ) .  ~q) (9) 

and 

N =  l+2Spq cos ( a )  sin ( a )  (10) 

such that 

P= ~, ~ C~pCjvS~j (11) 
i E F  A j C F B  

is maximized. In these equations ~bp refers to a bond between atoms A and B. 
FA, ]'B are subsets of  Fp, local to atoms A and B respectively. C~p e.g. refers to 
an element of  the NOLMO-coefficient matrix. Maximization of  P in Eq. (1l)  
implies a maximization of the overlap populat ion between the hybrids on the 
atoms A and B for a bond A--B. In case the local basis sets of  more than one 
N O L M O  are subsets of  some other local basis set, the procedure described above 
is applied in sequence for all subsets until convergence is reached. The optimiz- 
ation problem specified by Eqs. (9-11) can easily be solved by standard techniques. 

5. Applications 

In this section aspects concerning the practical use of  NOLMOs will be discussed: 
i) Each N O L M O  has at its disposal only a subset of  the full basis set and 
consequently the minimal energy that results from a single determinant of  
NOLMOs will be higher than the SCF energy calculated using the full basis set. 
One may now ask how closely the SCF energy actually is reproduced. 

ii) It is well-known [4] that equilibrium geometries, as well as energy differences 
between conformations and barriers to internal rotation can be predicted quite 
well by standard HF-SCF calculations. Are such predictions also possible by 
NOLMO-determinant  calculations? 

iii) A third, and most interesting, question concerns the possible transferability 
of  NOLMOs from one molecule to another. To what extent do various properties 
of  NOLMOs  remain conserved? 
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Fig. 1. Reference conformation (r = 0 ~ ~" = torsion angle 

21 ~1 

13 ~ 22 
23 12 

5.1. Total energy and barriers to internal rotation 

Ab-initio calculat ions using the 4-31G basis set [22] were per formed on CH4, 
NH3, H20,  CH3CH3, CH3NH2, CHaOH,  NI-I2NH2, NH2OH,  and H O O H  using 
a modified version o f  the G A U S S I A N - 8 0  program [2]. In all cases s tandard bond  
lengths and angles [23] were adopted.  Barriers to internal rotat ion were calculated 
by varying torsion angles in steps o f  30 ~ The reference conformat ion  (~ = 0) for 
those molecules having a barrier to internal rotat ion is defined in Fig. 1 and 
Table 2. Note  that, in order  to have a un i form labeling in all molecules,  lone 
pairs were included as substituents. 

Local basis Sets for each N O L M O  were chosen so as to correspond to bonds,  
inner shells and lone pairs. Local basis sets o f  bonds  consisted o f  all a tomic 
orbitals associated with the two bonded  atoms, other basis functions were not 
included. Inner  shell and lone pair  local basis sets were restricted to all the atomic 
orbitals o f  a single atom. N O L M O s  having an identical local basis set were made  
or thogonal  and subsequently localised by maximising the sum of  their self- 
repulsion energies according  to the Edmis ton -Ruedenbe rg  procedure  [5]. This 
localisation criterion leads to equivalent lone pairs on oxygen in all cases studied. 
In  the cases that  one or more local basis sets were subsets o f  another  one, the 
overlap popula t ion  between the two hybrids on the bonded  atoms was maximised 
according to the procedure  described in the previous section. 

In  Table 3 total energies obtained from standard H F - S C F  and N O L M O  calcula- 
tions are compared .  These results clearly demonst ra te  that the constraint  imposed 
on the wave funct ion by the use o f  N O L M O s  leads to total energies which in all 
cases are very close to the s tandard SCF values. The max imum deviation found  
in the present  series o f  molecules is about  0.03 a.u. ( - 2 0  kcal /mole) .  This is in 

Table 2. Definition of substituent labels for CH3CH3, 
CH3NH2, CH3OH, NH2NH2, NH2OH, and HOOH. Lone 
pairs are included as substituents 

Label Substituent 

1 c C c N N O 
11 H H H H H H 
12 H H H H H lp 
13 H H H lp lp lp 
2 C N O N O O 

21 H H H H H H 
22 H H lp H lp lp 
23 H lp lp lp lp lp 
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perfect agreement with the results previously obtained by Stoll et al. [10], who 
used a minimal basis set. Even more important is the finding that barrier potentials 
are reproduced correctly in all cases studied (see Table 3 and Fig. 2). These 
results show that the inclusion of  electron delocalisation, which is explicitly 
excluded by the use of  NOLMOs, is not a "conditio sine qua non"  to obtain 
qualitatively correct barrier potentials, at least not in an ab-initio scheme. This 
finding is in contradiction with Weinhold's opinion [24]. A more extensive 
discussion on the weaknesses inherent to the interpretation by Weinhold of  
LCBO-MO calculations [24, 25] was given by Magnasco and Musso [26, 27]. The 
difference in total energies between the standard- and the NOLMO-calculations 
can be considered a measure of  the afore-mentioned delocalisation effect, when 
second-order contributions are unimportant. These contributions indeed have 
been shown to be small [26, 27]. The influence of delocalisation on the barrier 
is listed in Table 3 under the heading deloc. It is clear that this contribution is 
small, although not negligible. It follows that delocalisation must be included in 
order to obtain a quantitatively correct barrier. 

a b 
CH3CH a CH3NH 2 
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O- 
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-2 
0 60120180240300360 

d 
NHzNH z 

14 

10 

8 

4 

2 

0 
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Fig. 2. Comparison of ab-initio (O) and NOLMO (A) SCF barriers to internal rotation for: (a) 
CH3CH3, (b) CHaNH2, (c) CH3OH, (d) NH2NH2, (e) NH2OH, (f) HOOH. Also shown (I-1) is the 
effect of electron delocalisation on the barriers. The ordinates and abscissas represent the energy 
(in kcal/mole) and the torsional angle (0-360 ~ respectively 
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Table 4. Geometrical  parameters in angstroms and  degrees, optimised using the 4-31G 
basis set and the same basis set augmented with polarisation functions (i s - +  5 d-functions 
on the heavy atoms + 3 p-functions on the hydrogen atoms). Values in brackets represent 
the corresponding HF-SCF results 

4 - 3 1 G  4-31G** 

M O L E C U L E  r ( X - H )  < ( H X H )  r ( X - H )  < ( H X H )  

CH 4 1.081 1.081 
(1.081) (1.083) 

NH 3 0.990 118.8 1.000 109.3 
(0.991) (115.8) (1.000) (107.5) 

H20 0.948 112.9 0.943 107.7 
(0.950) (111.2) (0.943) (105.8) 

5.2. Transferability of  certain properties of  NOLMOs 

From Table 4 one can compare the calculated equilibrium geometries for C H 4 ,  

NH3 and H20 using the 4-31G and 4-31G** basis sets [22]. Whereas bond lengths 
are almost unaffected in NOLMO-SCF calculations, bond angles are consistently 
calculated a few degrees larger than the corresponding HF-SCF values. However, 
considering the difference between the 4-31G and the 4-31G** HF-SCF results, 
one can say that equilibrium geometries are reproduced quite well by the 
NOLMO-SCF calculations. 

Table 5. Statistics for the quasi-classical kinetic energy (a.u.) of  some types of NOLMOs 

NOLMO Mean Std a Min Max Range 

Cis b 32.0728 0.0132 32.0544 32.0864 0.0320 
Nis 45.2189 0.0329 45.0915 45.2629 0.1714 
Ois 61.2561 0.1051 61,0792 61,3985 0.3193 

C - - C  1.7808 0.0004 1.7803 1.7813 0.0010 
C - - N  2.3326 0.0000 2.3325 2.3326 0.0000 
C - - O  3.1998 0.0005 3.1991 3.2005 0.0014 
N - - N  2.4345 0.0072 2.4242 2.4439 0.0197 
N - - O  3.0453 0.0089 3.0366 3.0588 0.0222 
O - - O  3.3462 0.0082 3.3356 3.3578 0.0222 

C - - H  1.5909 0.0241 1.5623 1.6528 0.0906 
N - - H  2.3293 0.0421 2.2801 2.4199 0.1398 
O - - H  3.2738 0.0763 3.1717 3.3857 0.2140 

Nip c 2.7413 0.0304 2.7005 2.8134 0.1129 
Olp 3.8302 0.0428 3.7629 3.8791 0.1163 

a Standard deviation. 
b Inner shell. 

Lone pair. 
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Table 6. Statistics for the quasi-classical one-electron potential energy (a,u.) of  some types of  
NOLMOs  

NOLMO Mean Std ~ Min Max Range 

Cis b -22.6335 0.0047 -22.6383 -22.6268 0.0115 
Nis -26.8143 0.0069 -26.8245 -26.7860 0.0385 
Ois -31.1199 0.0204 -31.1477 -31.0866 0.0610 

C - - C  -2.5487 0.0001 -2.5488 -2.5485 0.0002 
C - - N  -2.7760 0.0000 -2.7760 -2.7759 0.0001 
C - - O  -3.0147 0.0002 -3.0150 -3.0145 0.0005 
N ~ N  -2.8289 0.0028 -2.8326 -2.8252 0.0074 
N - - O  -3.0677 0.0036 -3.0721 -3.0636 0.0085 
O - - O  -3.0110 0.0049 -3.0178 -3.0047 0.0131 

C - - H  -3.1749 0.0109 -3.1983 -3.1656 0.0327 
N - - H  -3.4709 0.0131 -3.4979 -3.4548 0.0431 
O - - H  -3.7663 0.0184 -3.7888 -3.7399 0.0489 

Nlp c -3.5958 0.0287 -3.6404 -3.5473 0.0932 
Olp -4.2823 0.0348 -4.3245 -4.2338 0.0907 

Standard deviation. 
b Inner shell.. 
c Lone pair. 

Table 7. Statistics for the quasi-classical two-electron potential energy (a.u.) of  some types of  NOLMOs 

N O L M O  Mean Std a Min Max Range 

Cis b 3.5111 0.0010 3.5097 3.5122 0.0025 
Nis 4,1691 0.0012 4.1643 4.1709 0.0065 
Ois 4.8477 0.0036 4.8423 4.8527 0.0103 

C - - C  0.6796 0.0000 0.6796 0.6797 0.0001 
C - - N  0.7311 0.0000 0.7311 0.7312 0.0001 
C - - O  0.7908 0.0000 0.7908 0.7909 0.0001 
N - - N  0.7343 0.0016 0.7320 0.7365 0.0045 
N - - O  0.7944 0.0019 0.7926 0.7973 0.0047 
O - - O  0.7619 0.0012 0.7604 0.7637 0.0033 

C - - H  0.6873 0.0035 0.6843 0.6949 0.0106 
N - - H  0.7648 0.0044 0.7594 0.7738 0.0145 
O - - H  0.8485 0.0059 0.8402 0.8563 0.0161 

Nlp c 0.7752 0.0089 0.7548 0.7876 0.0329 
Olp 0.9252 0.0097 0,9109 0.9372 0.0262 

a Standard deviation. 
b Inner  shell. 
c Lone pair. 

T o  e s t i m a t e  t h e  d e g r e e  t o  w h i c h  N O L M O s  c a n  b e  c o n s i d e r e d  a s  m o r e  o r  l e s s  

t r a n s f e r a b l e  u n i t s ,  t h e  f o l l o w i n g  c h a r a c t e r i s t i c s  f o r  a s p e c i f i e d  N O L M O  ~bp a r e  

c o m p a r e d :  
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1) The energy components associated with the quasi-classical density ~bp~b* 
corresponding to NOLMO ~bp 

a) The kinetic energy: 2(~pl-�89 (see Table 5). 

b) The one electron potential energy: 2(~bp[~.~ a ZI,(A)/RAICkp) , where Zp(A) refers 
to that part of  the nuclear charge of  atom A assigned to ~bp ~, and Na is the number 
of  atoms. (See Table 6). 

c) The two electron potential energy: (~,p4,pll/r121r (See Table 7). 

2) Mulliken populations in the basis of  atomic hybrids for those cases where 
NOLMO thp corresponds to a bond. (See Table 8). 

Table 8. Statistics for the hybrid populations of those NOLMOs corresponding to bonds 

NOLMO Population Mean Std a Min Max Range 

C--C Hybrid-C 0.6095 0.0000 0.6095 0.6095 0.0001 
Hybrid-C 0.6095 0.0000 0.6095 0.6095 0.0001 
Overlap 0.7810 0.0000 0.7810 0.7811 0.0001 

C--N Hybrid-C 0.3759 0.0002 0.3756 0.3762 0.0007 
Hybrid-N 0.9238 0.0004 0.9233 0.9243 0.0010 
Overlap 0.7003 0.0001 0.7001 0.7004 0.0003 

C--O Hybrid-C 0.2997 0.0002 0.2994 0.3000 0.0006 
Hybrid-O 1.0900 0.0004 1.0894 1.0905 0.0011 
Overlap 0.6103 0.0002 0.6100 0.6106 0.0006 

N--N Hybrid-N 0.6344 0.0002 0.6342 0.6346 0.0004 
Hybrid-N 0.6344 0.0002 0.6342 0.6346 0.0004 
Overlap 0.7312 0.0003 0.7309 0.7317 0.0008 

N--O Hybrid-N 0.4883 0.0136 0.4693 0.5041 0.0348 
Hybrid-O 0.8262 0.0164 0.8072 0.8489 0.0417 
Overlap 0.6856 0.0028 0.6818 0.6888 0.0070 

O--O Hybrid-O 0.6808 0.0006 0.6799 0.6814 0.0015 
Hybrid-O 0.6808 0.0006 0.6799 0.6814 0.0015 
Overlap 0.6385 0.0011 0.6372 0.6403 0.0031 

C--H Hybrid-C 0.7211 0.0129 0.6895 0.7516 0.0621 
Hybrid-H 0.4798 0.0110 0.4596 0.5075 0.0479 
Overlap 0.7990 0.0040 0.7888 0.8030 0.0142 

N--H Hybrid-N 0.9656 0.0155 0.9430 0.9970 0.0540 
Hybrid-H 0.3175 0.0087 0.3022 0.3342 0.0320 
Overlap 0.7168 0.0074 0.7009 0.7251 0.0243 

O--H Hybrid-O 1.0833 0.0151 1.0591 1.1131 0.0539 
Hybrid-H 0.2708 0.0076 0.2573 0.2833 0.0260 
Overlap 0.6459 0.0085 0.6297 0.6576 0.0279 

a Standard deviation. 

1 Zp(A) =2 if d~p corresponds to an inner shell or a lone pair on atom A. Zp(A) = Zp(B) = 1 if tkp 
corresponds to a bond between atoms A and B. 
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In Tables 5, 6 and 7, for each type of NOLMO present in the molecules studied, 
the mean value, the standard deviation, the minimum and maximum value and 
the range of  the kinetic energy, the one-electron potential energy and the two- 
electron potential energy, respectively are given. From these Tables it is clear 
that the three energy components are remarkably constant, as witnessed by the 
relatively small standard deviations. The kinetic energy (Table 5), which is related 
to the shape of  the NOLMOs is seen to be the most sensitive parameter, whereas 
the self-repulsion energy (Table 7), is least sensitive to the chemical environment; 
the standard deviation of  the latter is almost an order of magnitude smaller than 
the standard deviation in the kinetic energy. It is seen that standard deviations 
associated with NOLMOs corresponding to bonds between carbon, nitrogen and 
oxygen are small compared to the remainder of  the NOLMOs. It should be 
realized, however, that in the present set of calculations each of  these bonds is 
represented by a single molecule and has been influenced only by internal rotation. 

Table 8 shows some statistics for the Mulliken populations, in the basis of their 
constituent hybrids, for all NOLMOs corresponding to bonds. Again one observes 
low standard deviations suggesting the transferability of NOLMOs. Note that all 
overlap populations, regardless of the particular bond they originate from, are 
calculated in the rather limited range of  0.6 to 0.8 electrons. This could mean 
that, in order to have a stable bond, the overlap population is limited to a narrow 
range of values. 

6. Conclusions 

The calculation scheme outlined in the previous sections leads to a description 
of bonds, lone pairs and inner shells in terms of  properties that are well transfer- 
able from one molecule to another. When the wave function is written as a single 
determinant of  NOLMOs, the energy calculated is very close to the energy 
obtained by a standard HF-SCF calculation. Furthermore, qualitatively correct 
barrier potentials are reproduced in all cases studied. This means that the influence 
of  electron delocalisation is relatively small, contrary to what might be concluded 
from a number of semi-empirical calculations [24, 25]. 

The transferability of NOLMOs, as well as the qualitatively correct prediction 
of barrier potentials, suggest that NOLMOs can be used as a basis for the analysis 
of conformational problems by means of an energy decomposition scheme which 
will be presented in a number of  subsequent papers. 
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